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ABSTRACT 
A novel numerical technique is presented with which the temperature profile within a selected transverse 
plane of an object can be reconstructed provided the boundary data around the transverse plane are 
known. Numerical simulations of the proposed computed tomography technique are performed to verify 
its feasibility and accuracy using several heat conduction examples whose exact solutions can be found in 
literature. Restrictions of and mathematical difficulties encountered in the proposed technique are presented. 
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INTRODUCTION 

Majority of methods1-6 developed to date to determine the internal temperature profile are 
valid when the objects of concern are transparent to light waves or exist in the form of either 
liquid or gas allowing the installation of mechanical probes within the objects. The need exists 
to develop a technique to detect internal temperature as the methods cited above fail. A novel 
technique using computed tomography (CT) is presented in this paper in which only the empirical 
thermal data are needed along the periphery of a selected cross-section of an object regardless 
of its form. 

The CT technique in medical diagnosis is used to reconstruct the quantitative map of the 
X-ray attenuation coefficient in a transverse plane of a human body. Using an array of X-ray 
detectors the empirical data are collected from the X-ray transmitted through a human body 
at many different angles. Subsequently, the data are numerically processed to reconstruct the 
transversal image using the technique called filtered back-projection7. In this investigation, the 
proposed technique requires no X-ray or any other physical waves, the conventional means such 
as thermocouples may be employed to acquire the boundary data. Only fictitious rays are used 
in the mathematical formulation and numerical treatment. 

Recently Wadley et al.8 presented a tomographic technique using ultrasound to reconstruct 
the radially symmetric and rectangularly symmetric temperature fields within the stainless steel. 
Due to symmetry, only a few measurements of the ultrasonic time-of-flight are needed to 
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reconstruct the velocity profile. The data are then used to compute the temperature through a 
velocity-temperature relation. 

Conventional numerical methods, such as finite difference, finite element, or boundary element, 
may be employed to determine the internal temperature of an object provided that the boundary 
conditions at all surface nodes and the material properties of the object under investigation are 
known. This is not so in the present CT technique in which only the boundary conditions along 
the periphery of a selected cross-sectional plane need to be prescribed. As a result, the CT 
technique only calculates the temperature at nodes in the selected plane. It needs to be pointed 
out that the current CT technique cannot be employed to solve the heat conduction problem. 
Rather, it is used to 'measure' the existing internal temperature distribution. Consequently, no 
material properties are required. 

The formulation and numerical treatment of the CT technique using finite element method 
to approximate the tomographic integral equation are presented. Restrictions, undersampling 
and noise sensitivity of the CT technique are also discussed. Numerical simulation is demonstrated 
using several problems whose temperature solutions exist in closed form. 

The present temperature reconstruction problem shares the mathematical analogy of 
ill-posedness with the other inverse problems9. In the latter problems, for instance, the surface 
temperature and heat flux are to be determined from the known temperature within the object. 
Ill-posedness of the CT technique is also discussed. 

NUMERICAL TREATMENT OF THE CT TECHNIQUE 

The problem of concern is depicted in Figure 1 which represents a selected transverse plane of 
an object and an arbitrary fictitious X-ray intersecting the boundary at points 1 and 2 having 
known temperatures T1 and T2, respectively. The selected plane may be of a multiply-connected 
region as long as its boundary data are known. The jth fictitious X-ray in Figure 1 may be 
expressed by the line equation: 
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where mj is the slope and ej the y-intercept of the line. Since dT = ∂T/∂xdx + ∂T/∂ydy + 
∂T/∂z dz, integration of dT along the X-ray gives: 

where x1 and x2 are the x-coordinates of points 1 and 2, respectively. Note that the integration 
has to be carried out along the y-axis instead if the X-ray is parallel to the y-axis. It is readily 
seen that for (2) to remain valid the partial derivatives or the temperature gradients in (2) must 
be continuous throughout the region. This happens to be the major restriction of the present 
technique. Discontinuity of temperature gradients may stem from internal crack, material 
inhomogeneity, phase change, etc. 

Our aim at this moment is to solve the integral equation (2) for the unknown temperature 
derivatives. In transmission CT used for medical diagnosis, the integrand in (2) appears to be 
the linear attenuation coefficient of the X-ray in human tissue. The integral equation represents 
the well-known Radon transform and the inverting technique widely used is called filtered 
back-projection10. Presently the integrand of (2) is, however, a function of the X-ray's incident 
angle. As a result, the method of filtered back-projection is unapplicable. Thus the following 
algebraic method is employed, which is in mathematical analogy with the simultaneous correction 
technique11. 

We first discretize the plane region into a number of four-noded elements. A generic element 
is shown in Figure 1. The temperature gradients in (2) may be approximated from element nodal 
values using the interpolation function Hi commonly found in finite element method12. Hence, 

where Ui and Vi are the nodal values of ∂T/∂x and ∂T/∂y at node i, respectively. Note that Hi 
is a linear interpolation function of the natural coordinates r and s. It thus entails a coordinate 
transformation from x-y to r-s in order to numerically evaluate the integral in (2). The coordinate 
transformation is fulfilled through the interpolation function as follows: 

in which Xi and Yi are the nodal coordinates. Substitution of (4) into (1) yields the X-ray equation 
in the transformed plane: 

c0 + c1r + c2s + c3rs = 0 (5) 
where c 0 , . . . , c3 are constants. In general, c3 does not vanish meaning that the fictitious X-ray 
in the transformed plane is not straight. 

After discretization the integral equation (2) can be written as: 

where: 

Here, dx = J dr. K is the total number of elements, rn
p and rn

q are, respectively, the r-coordinates 
of the two intersection points of the X-ray and the two edges of element n, and ΔTj is the 
temperature differential, T2 — T1. 
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To numerically evaluate the integral by means of Gaussian quadrature, a linear transformation 
is needed to change the integration limits to +1 and — 1. For a given value of r, the term ds/dr 
in J may be determined from (5). Since points 1 and 2 in Figure 1 are not necessarily the element 
nodes, T1 and T2 need to be interpolated from the temperatures of their two neighbouring 
element nodes. It is found from our numerical experiments that satisfactory results can only be 
achieved provided the midside nodes on the boundary edges are inserted and the quadratic 
interpolation is adopted. 

Each fictitious X-ray will produce one equation in the form of (6). One X-ray may result in 
two or more equations if a multiply-connected or convex region is involved. For an N-node 
model, there are 2N unknown nodal temperature gradients. It requires at least 2N rays at many 
different angles in order to find all the unknowns. Therefore (6) may be written in the following 
algebraic form: 

or in matrix form: 
AZ = D (8) 

where ZT = [U1 V1... UN VN], Dj = ΔTj and Aji are the coefficients of Zi. Note that matrix 
A is non-symmetric and sparse, since there are only a few elements on the way of an incident X-ray. 

If a total number of 2N rays are used in conjunction with some incident angles to produce 
a square matrix A in (8), the resulted solution is hardly acceptable. This phenomenon is commonly 
known as undersampling (too few data) in image processing. Ill-posedness also contributes to 
the failure of using a square matrix A, because two nearly parallel rays may produce two rows 
of practically identical components in A causing it to be nearly rank deficient. To overcome this 
mathematical hurdle, we consider the following procedure. As a matter of fact, inserting midside 
nodes on the boundary element edges is the first step taken to alleviate the ill-posedness. Then 
the total number of rays, M, is increased to twice as many, for instance, to tackle the problem 
of undersampling. As a consequence, we have a least-squares (LS) problem: 

where A is now an M-by-2N rectangular matrix, D represents a vector of compatible size, and 
|| • || indicates the vector norm. To solve this LS problem, there are a number of methods13 at 
our disposal. First, in the method of normal equation, (8) is premultiplied by AT, the transpose 
of A. Then Gaussian elimination is utilized to find the unknown vector Z. As pointed out by 
Golub and Van Loan13, Gaussian elimination in this numerical scheme may cause spurious 
errors. Thus the QR decomposition method using modified Gram-Schmidt algorithm is also 
considered. We have found in our numerical experiments that both methods give practically the 
same results. 

Another measure to alleviate the ill-posedness of this LS problem is to specify the boundary 
temperature gradients, ∂T/∂z and ∂T/∂y, in addition to the boundary temperature. As indicated 
by Tikhonov and Arsenin14, non-uniqueness of an ill-posed problem may be eliminated provided 
further supplementary information pertaining to the problem is prescribed. On some heat 
conduction problems in which the boundary temperature is held constant and the transient-state 
solution is of interest, the boundary temperature gradients at an instance must be specified in 
order to uniquely determine the internal temperature corresponding to that specific instance. 
The temperature gradients or heat flux may be measured using the experimental techniques 
reported in the literature15,16. In axisymmetric cases, the boundary temperature around a selected 
plane normal to the axis of symmetry is uniform. Both nodal temperatures and temperature 
gradients must be specified to obtain a non-trivial solution. In addition, the following constraint 
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for each internal node with polar coordinates (ρ,θ) may be implemented to ensure axisymmetry: 

or, 

Further constraints, such as the one that requires ∂T/∂ρ be equal at a constant ρ, may also be 
implemented. It is not considered, however, in this investigation. Consequently, matrix A of (8) 
must be modified to account for the known temperature gradients. This may be fulfilled by 
utilizing the so-called static condensation12. It modifies the RHS vector after eliminating the 
known temperature gradients. The method described in the previous paragraph is then used to 
solve for the remaining unknown temperature gradients at the internal nodes. The CT technique 
will produce erroneous trivial solutions in cases where the boundary temperature is uniform 
and the selected sectional boundary is insulated. Consider, for example, the axisymmetric problem 
of a solid cylinder with insulated cylindrical surface. This is because of the fact that the RHS 
vector D in (8) is unaffected after the static condensation implementing the insulation condition 
is performed. In this event, a different section should be selected, if possible. 

We show in Appendix I that if a function can describe the temperature and temperature 
gradient on the boundary, this function must be the unique temperature field of the whole 
medium. This indicates that to obtain the valid solution both the temperature and temperature 
gradient on the boundary must be included in the current CT technique. As our experience 
shows, the CT technique performs rather well for problems having a monotonic temperature 
field and non-uniform boundary temperature, even though the boundary temperature gradient 
is not included. Care must be exercised in this regard, because whether the temperature field is 
monotonic is generally not known. 

After the nodal temperature gradients have been found, the internal nodal temperatures may 
be calculated through the integration of dT over an element edge having a known nodal 
temperature at one end. For an element edge with slope m and end nodes i and j, we have 

where Ti is either given or found in the process, and xi and xj the x-coordinates of the end 
nodes. The derivatives in (11) need to be approximated using interpolation functions from the 
nodal temperature gradients found in the previous phase. Gaussian quadrature may then be 
used to evaluate the integral in (11). Note that an interior node is often the intersection of several 
element edges along which (11) is evaluated. The temperatures found for this intersection from 
different edges deviate slightly from each other, and their averaged value is used. 

NUMERICAL EXPERIMENTS AND ERROR ANALYSIS 

We now demonstrate three heat conduction examples whose exact temperature fields can be 
found in the text by Özisik17. In the first example, we are to reconstruct the steady-state 
temperature in a solid cylinder of length L = 10 m and radius R = 4 m, when its cylindrical 
surface dissipates heat by convection into a medium at zero temperature, the boundary at the 
upper end is kept at zero temperature, and the boundary at the lower end is kept at a radially 
symmetric temperature profile of 2(1 + ρ2), where ρ is the radial coordinate. The profile at the 
lower end is chosen in such a way that a selected plane near the lower end will have a concave 



250 R. J. GU AND H. C. WANG 

internal temperature profile. Two meshes for the full circular region are used in reconstructing 
the temperature in a plane normal to the axial axis and 2 m from the lower end. A quarter of 
each mesh is shown in Figure 2a. The element size of the fine mesh with 250 nodes and 220 
elements is about 44.4% of the coarse counterpart having 129 nodes and 108 elements. The 
exact solution is used to calculate the boundary temperature and temperature gradient to simulate 
the experimental measurements. The following data are arbitrarily chosen in the calculation: 
heat transfer coefficient = 1.0 W/m2 C, and conductivity = 1.0 W/m C. The reconstructed 
temperature profile using the proposed technique is shown in Figure 3 while Table 1 contains 
the legend for the curves and the temperature at the centre of the cylinder for each numerical 
test. Note that the exact temperature at the centre is 6.941°C. The numerical tests are conducted 
using various combinations of d, the distance between two neighbouring parallel rays, and Δθ, 
the incremental angular distance of the rays used. These curves represent the temperature profile 
along the diameter on the x-axis, except that curve 3b is for the diameter 45° from the x-axis. 
Note that curves 3a and 3b are the result of the numerical test 3 in Table 1 which ignores (10). 
The predicted result using the coarse mesh, shown by curve 1 in Figure 3, does not reflect the 
concavity. By comparing curves 2, 3 and 7, it is seen that the predicted result is improved 
noticeably if (10) is implemented. Note that curve 2, produced using d = 0.3 and Δθ = 5°, 
practically resembles the exact solution with a maximum error of less than 2%. Using the same 
combinations of d and Δθ, some computer-generated random errors within a specified range, 
signified as A.E. (artificial error) in Table 1, are imposed on the boundary data to simulate the 
real situation. The contaminated boundary data do not represent the condition of axisymmetry, 
although (10) is enforced in the numerical tests 4, 5, 6, 8, 10, and 11 in Table 1. Note that tests 
10 and 11 in Table 1 are not plotted in Figure 3. Although these reconstructed temperature 
profiles from the contaminated data contain spurious errors of various degree, they display 
concavity. Table 1 may be cross-referenced with the results reported later in Table 2. 

More numerical tests are performed on this example to gain insight of the reconstruction 
technique. The results are displayed in Table 2. Here only the calculated temperature at the 
centre of the cylinder is included since it bears the degree of integrated error, and can be used 
as an accuracy indicator for the numerical tests. Note that the tests are run using (10) and the 
fine mesh in Figure 2a without any artificial errors. The tests are displayed in five groups by 
their values of Δθ. Apparently, the group Δθ = 9° is not acceptable. This is known as 
θ-undersampling in the field of image reconstruction because too few angles are used. The 
reconstructed result deteriorates as the value of d increases in a group of tests. Generally the 
groups with Δθ = 5° and 7° predict better results. In the groups with Δθ = 1° and 3° the 
improvement stagnates as the value of d decreases. 
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Table 1 Legend of curves in Figure 3 

Test 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10** 
11** 

Δθ† 

3° (60) 
5° (36) 
3° (60) 
5° (36) 
5° (36) 
5° (36) 
5° (36) 
5° (36) 
3° (60) 
3° (60) 
1° (179) 

d 

0.3 
0.3 
0.15 
0.3 
0.3 
0.3 
0.3 
0.3 
0.2 
0.05 
0.1 

M 

1560 
936 

3180 
936 
936 
936 
936 
936 

2340 
9540 

13936 

A.E. (%) 

4-8 
-4 -4 

0-8 
— 

-8 -8 
-4 -4 
-4 -4 
-4 -4 

Eqn (10) 

Yes 
Yes 
No 
Yes 
Yes 
Yes 
No 
Yes 
No 
Yes 
Yes 

Tentr
* 

11.132 
6.944 
6.044 
5.043 
3.975 
3.697 
1.401 
1.070 

-0.210 
2.090 
2.033 

Mesh 

Coarse 
Fine 
Fine 
Fine 
Fine 
Fine 
Fine 
Fine 
Fine 
Fine 
Fine 

†The resulted number of angles is given in parenthesis 
*The exact temperature at the centre is 6.941°C 
**Not plotted in Figure 3 

The second example involves a hollow cylinder whose initial temperature is T0 > 0, and the 
boundary surfaces at R = Ri and R = R0 are then held at zero temperature. We are to reconstruct 
the axisymmetric temperature field from the available boundary data at a specific instance. To 
demonstrate the capability of the CT technique in tackling irregular geometries, we choose an 
arbitrary portion of the cylinder, and simulate the boundary measurements using the exact 
solution. The following data are arbitrarily chosen: thermal diffusivity = 1.0 x 10-6m2/sec, 
T0 = 2°C, R i = l m and R0 = 5 m. The only mesh used in the numerical tests is shown in Figure 
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Table 2 Undersampling analysis with different combinations of d and Δθ for example 1 

Test 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Δθ 

1° 

3° 

5° 

7° 

9° 

d 

0.08 
0.1 
0.15 
0.2 
0.3 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.05 
0.1 
0.2 
0.3 
0.4 
0.05 
0.1 
0.2 
0.3 
0.4 

M 

17456 
13936 
9360 
6896 
4608 
9540 
4740 
2340 
1560 
1140 
900 
5724 
2844 
1404 
936 
684 
540 

4134 
2054 
1014 
676 
494 
3180 
1580 
780 
520 
380 

Tentr 

6.177 
6.174 
6.064 
5.768 
5.932 
6.020 
6.070 
5.709 
5.350 
2.626 
0.372 
6.161 
6.494 
6.324 
6.944 
7.438 

-0.501 
6.546 
6.604 
6.216 
6.683 

-1.269 
2.998 
3.440 
1.689 
4.834 
8.516 

2b which has 117 nodes and 96 elements. The reconstructed temperature profile at an arbitrary 
instance along the radial line at θ = 72° is shown in Figure 4. In the calculation Δθ = 4° and 
d = 0.4 m are used. The legend for the curves is given in Table 3 together with the maximum 
percentage error at a node (not necessarily of the same location). The last four tests in Table 3 
are not plotted in Figure 4. Although many more rays are used in the last four tests, they do 
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Table 3 Legend of curves in Figure 4 

Test 

1 
2 
3 
4 
5 
6* 
7* 
8* 
9* 

Δθ 

4° 
4° 
4° 
4° 
4° 
3° 
3° 
3° 
3° 

d 

0.4 
0.4 
0.4 
0.4 
0.4 
0.2 
0.2 
0.2 
0.2 

M 

780 
780 
780 
780 
780 

2113 
2113 
2113 
2113 

A.E. (%) 

— 
- 4 - 4 
- 8 - 8 
- 8 - 8 
— 
- 4 - 4 
- 8 - 8 
- 8 - 8 

Eqn (10) 

Yes 
No 
Yes 
No 
Yes 
Yes 
Yes 
Yes 
No 

Max. error (%) 

2.25 
12.26 
4.97 

48.64 
7.92 
1.94 
4.82 
7.78 

66.19 

*Not plotted in Figure 4 

not show any significant discrepancy from the first five. Since the cylindrical surface has zero 
temperature, the computer-generated random error as a percentage is imposed only on the 
boundary temperature gradient. 

In the third example the steady-state heat conduction for an orthotropic rectangular region, 
0 ≤ x ≤ a, 0 ≤ y ≤ b, is considered. The region is heated by a constant heat source g0 (W/m3), 
while the boundaries at x = 0 and y = 0 are kept insulated and those at x = a and y = b are 
dissipating heat by convection into an environment at zero temperature. The following data are 
chosen to calculate the exact boundary temperature and temperature gradient: g0 = 1.0 W/m3, 
heat transfer coefficient in both directions = 1.0 W/m2 C, conductivity in (x,y) directions = 
(1.0,1.5) W/m C, and a = b= 10 m. Although the material of concern is orthotropic, it is 
homogeneous. Thus the continuity of the temperature derivatives is ensured. The mesh having 
64 elements and 81 nodes is shown in Figure 2c. The reconstructed temperature profiles along 
the —45° and 45° diagonals are depicted in Figures 5a and 5b, respectively. The legend given 
in Figure 5a is also applicable for Figure 5b. All tests are run using the combination of d = 0.8 m 
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and Δθ = 6° which results in 458 rays. Curve 1 of both Figures 5a and 5b agrees rather well 
with the exact solution. Since this problem has a monotonic temperature field and non-uniform 
boundary temperature, tests are also run without specifying the nodal boundary gradients 
(indicated as B.G. in Figure 5a). Curve 3 contains the maximum percentage error of 7.3% at 
the geometric centre. It is seen from curve 4 that the CT scheme is more sensitive to errors if 
no boundary gradient is specified. 

CONCLUSION 

A computerized tomographic technique is developed to reconstruct the temperature field within 
a selected transverse plane of an object if the temperature and temperature gradient around the 
periphery of the selected plane are provided. The technique requires that the temperature 
derivatives, ∂T/∂x and ∂T/∂y, be continuous within the selected cross-section. Numerical 
treatment of the formulated integral equation and the procedures taken to circumvent the 
mathematical difficulties regarding ill-posedness are presented. We show that to obtain a unique 
solution, both the temperature and temperature gradient must be specified on the periphery of 
the selected cross-sectional plane. At this stage of research, only numerical simulations are 
performed. The exact solutions of three heat conduction problems are used to simulate the 
empirical measurements at the boundary. The numerical results using the CT technique are in 
good agreement with the exact solutions. We have also tested some other examples of Özisik17, 
all result in a similar degree of success. Our future study may include exploring methods to 
improve the CT technique, statistical methods to smooth data noise, and investigating factors 
affecting the accuracy of the CT technique. It is well understood from the analysis that the 
proposed technique may fail if the difficulty in attaining accurate data, both boundary 
temperature and temperature gradient, in the laboratory cannot be overcome. Therefore what 
lies ahead is a great challenge for us to verify the technique in the laboratory. 
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APPENDIX I 

Proof of uniqueness 

Consider the following well-posed boundary value problem: 

where A( ) is the differential operator for the heat equation, θ(x) the unknown function, B( ) the differential operator 
defining the Neumann or mixed type boundary condition, and p(x), r(x), and s(x) the prescribed functions within domain 
Ω and on the boundaries Γ1 and Γ2. Although the boundary conditions may appear in different forms, it should not 
affect the consequences of this development. 

Provided that the function θ(x) has been determined from the above boundary value problem, the following relations 
may be established: 

where Γ = Γ1 È Γ2, and n is the unit outward normal to Y. We will show in this Appendix that, if there exists a function 
f such that: 

then f must be the solution to the above boundary value problem (Al). To achieve this we begin with the following 
theorem. 

Theorem: Let function a(x) be the solution to the following boundary value problem: 

If ∂a/∂n = 0 on Г, then q(x) = 0 and a(x) = 0 within Ω. 

Proof: It is known from the boundary integral equation approach18,19 that the function a can be written as: 

and 

where 
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Here, G(x,ξ) is the singular solution for the temperature at x generated by a unit point source applied at ξ in an infinite 
space, and F(x, ξ) the corresponding heat flux due to G(x, ξ)*, c a geometry parameter depending on the surface 
smoothness at ξ0, and k the conductivity. Since we have a = ∂a/∂n = 0 on boundary Г, (A7) becomes: 

For this to be true, we must have q(x) = 0. As a result, it is readily seen from (A6) that a(ξ) = 0 for all the points ξ 
within domain Ω. This completes the proof of the theorem. 

Now let 

where function θ(x) is the solution to the boundary value problem (A1) and satisfies the conditions (A2) and (A3), and 
function f(x) is chosen to satisfy the conditions (A4) and (A5). After applying the differential operator A( ) on y(x), 
we have the following: 

and 

According to the above theorem we have then Q(x) = 0 and γ(x) = 0 for xÎΩ. Hence we conclude that the function 
f(x) chosen to satisfy the conditions (A4) and (A5) must be identical to the solution θ(x) of the boundary value problem 
(Al). 

In this Appendix we have assumed isotropy for the medium and considered only the steady-state solution. Following 
the technique outlined here, we may achieve similar results for problems involving anisotropic and transient state using 
the treatments as depicted in References 18 and 19. 

*For brevity, the complete forms of G(x,ξ) and F(x,ξ) are not included here, although they may be found in References 
18 and 19++. 


